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Abstract

Among the passive control systems for attenuation of vibrations in structures, those that use viscoelastic materials as a

damping core in laminated-plate-like components are focused herein. In the present work an assessment of a time-domain

formulation for numerical modelling of viscoelastic materials is made. This formulation, which is called Golla–Hughes

method (GHM), is based on a second-order time-domain realization of Laplace-domain motion equations. The GHM

parameters used in the characterization of a viscoelastic material are experimentally determined and a sandwich GHM-

based finite element model is presented and validated through numerical comparisons with classic formulation results.

Finally, a time-domain simulation of an experimentally tested sandwich beam is carried out.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The modelling of viscoelastic materials has two main applications. Firstly, the simulation of rheological
problems, which is known as quasi-static analysis due to the fact that the inertial forces involved in the
problem are not taken into account. The classic models of Maxwell, Voigt and Kelvin and Refs. [1,2] are
typical examples of such models. Secondly, real dynamic problems involving viscoelastic materials have also
been studied since the 1950s in the works of Oberst and Frankenfeld [3], Kervin [4] and Ross et al. [5]. In
general, these kind of models simulate the dynamic structural behavior of the viscoelastic material working as
passive vibration control systems.

Vibration control systems assembled to structures, like the sandwich viscoelastic systems, have experienced
a growth in practical applications due to some benefits related to cost-effectiveness and a high level of dynamic
damping [6–9]. One of the first large-scale practical applications of sandwich viscoelastic elements in order to
reduce vibrations was the World Trade Center, New York, USA. Some features of this kind of project were
studied by Mahmoodi [10] and Samali and Kwok [11]. In Brazil, Battista et al. [8] developed dynamic tests in a
1:1 scale prototype of Rio–Niterói bridge (Rio de Janeiro, Brazil) central spam. This work consisted of a very
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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comprehensive experimental program, including comparisons between the dynamic behavior of a concrete/
steel deck and a sandwich (concrete/viscoelastic material/steel) deck, leading to the conclusion that the
sandwich deck has damping ratio considerably superior for high frequencies in this kind of application.

In order to model those systems, it is necessary a formulation which takes into account the temperature and
frequency dependence of the Young’s modulus and damping properties of the viscoelastic material. When the
relevant response of a sandwich viscoelastic system is framed in a short time interval, or when the analysis can
be done piecewisely, the temperature dependence may be ignored [8,10]. The consideration of frequency-
dependent viscoelastic properties is usually made in the frequency-domain. Clough and Penzien [12] affirm
that ‘‘when the equation of motion contains parameters which might be frequency dependent, such as stiffness
or damping, the frequency-domain approach is much superior to the time-domain approach’’.

Despite this previous statement, time-domain approaches are also employed to modelling viscoelastic
materials or composite structures in an efficient manner. These approaches are generally developed in the
framework of finite element method (FEM). Qian and Demao [13] made an attempt to build a theory analysis
and a series of numerical methods for dynamic behavior of sandwich structures, by using virtual work
principles and deriving finite element method in time-domain. Kaliske and Rothert [14] present a linear
viscoelastic finite element approach which was used to modelling rubbers and more specifically tires. A finite
element sandwich model for harmonically excited viscoelastic sandwich beams is proposed by Babert, Maddox
and Orozco [15]. Zapfe and Lesieutre [16] propose a discrete layer finite element for dynamic analysis of
laminated beams which appears to be efficient in the transverse shear treatment in the analysis of sandwich
structures. The finite element method presented by Yi et al. [17] is interesting since it considers a viscoelastic
damping layer working together with a smart piezoelectric constrained layer. Golla and Hughes [18] present a
time-domain formulation to modelling viscoelastic materials based on a second-order time-domain realization
of Laplace-domain motion equations which yields a linear differential formulation that includes an augment
in the set of generalized coordinates.

In the present work, a numerical–experimental assessment of the Golla–Hughes Method (GHM) [18] time-
domain formulation for numerical modelling of viscoelastic materials is carried out. A GHM-based sandwich
Finite Element model is proposed and the parameters which characterize the viscoelastic material are
experimentally determined. The theoretical formulation and the implemented solution method are thoroughly
assessed by means of comparisons between numerical results and their experimental counterpart,
demonstrating the favorable performance of this mathematical–numerical model.

2. The formulation of Golla–Hughes method

This section summarizes the Golla–Hughes method detailed in Ref. [18].
The complex Young’s modulus (EðsÞ) may be expressed in Laplace-domain as

EðsÞ ¼ eþ hðsÞ, (1)

where e is the elastic part of the complex modulus, hðsÞ is the dissipation function associated to the damping
and s is the Laplace variable. Biot [19] proposed a dissipation function as shown in Eq. (2)1.

hðsÞ ¼
Xn

i¼1

ais

sþ bi

, (2)

where ai and bi are obtained from curve-fitting experimental curves.
As the complexity of GHM models is directly associated to the number of dissipation function terms, it was

adopted a two terms approach for the Biot’s dissipation function, resulting in

hðsÞ ¼
aðs2 þ bsÞ

s2 þ bsþ d
, (3)

where a ¼ a1 þ a2, g ¼ a1b2 þ a2b1, b ¼ b1 þ b2 and d ¼ b1b2.
1Bagley and Torvik [20] proposed a fractional derivative model for dissipation functions which shows good agreement with experimental

results.
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The dynamic equilibrium equation for a single-degree-of-freedom (dof) system in Laplace-domain,
considering null initial conditions and Eq. (1), may be written as

½s2Mþ EðsÞK�qðsÞ ¼ ½s2Mþ eKþ hðsÞK�qðsÞ ¼ f ðsÞ, (4)

where M is the mass of the system; K is part of the system stiffness which excludes the complex modulus
expressed in Laplace-domain; qðsÞ is the degree-of-freedom and f ðsÞ is the excitation.

The aim of GHM is to express Eq. (4) in the time-domain using a particular inverse Laplace
transformation2, which consists in a second order time-domain realization of Laplace-domain motion
equation. It can be noticed that all the terms of Eq. (4) have a simple inverse Laplace transformation except
the term hðsÞqðsÞ, which includes a product of two functions of s. GHM admits that H ¼L�1½hðsÞqðsÞ� exists
and it can be expressed as

M m

m 1

� � €qðtÞ

€zðtÞ

( )
þ b

D d

d 1

� � _qðtÞ

_zðtÞ

( )
þ d

K k

k 1

� �
qðtÞ

zðtÞ

( )
¼

H

0

� �
, (5)

where M, D, K , m, d and k are unknowns; z is an additional degree-of-freedom and t is the time variable.
In order to validate this assumption, the first line of the matrix Eq. (5) must represent L�1½hðsÞqðsÞ� ¼H

and the second line must present an identity.
By expanding the matrix Eq. (5), the following equations are obtained:

M €qðtÞ þm €zðtÞ þ bD _qðtÞ þ bd _zðtÞ þ dKqðtÞ þ dkzðtÞ ¼H, (6)

m €qðtÞ þ €zðtÞ þ bd _qðtÞ þ b_zðtÞ þ dkqðtÞ þ dzðtÞ ¼ 0. (7)

The Laplace transformations of Eqs. (6) and (7) are expressed in the following equations, respectively:

MqðsÞs2 þmzðsÞs2 þ bDqðsÞsþ bdzðsÞsþ dKqðsÞ þ dkzðsÞ ¼ hðsÞqðsÞ, (8)

mqðsÞs2 þ zðsÞs2 þ bdqðsÞsþ bzðsÞsþ dkqðsÞ þ dzðsÞ ¼ 0. (9)

Regrouping the terms in qðsÞ and zðsÞ from Eqs. (8) and (9) leads to the following equations, respectively:

ðMs2 þ bDsþ dKÞqðsÞ þ ðms2 þ bdsþ dkÞzðsÞ ¼ hðsÞqðsÞ. (10)

ðms2 þ bdsþ dkÞqðsÞ þ ðs2 þ bsþ dÞzðsÞ ¼ 0. (11)

Replacing zðsÞ in Eq. (10) for its expression obtained from Eq. (11) and considering hðsÞ from Eq. (3) leads
to

ðMs2 þ bDsþ dKÞ �
ðms2 þ bdsþ dkÞ2

s2 þ bsþ d
¼

as2 þ gs

s2 þ bsþ d
. (12)

Regrouping the coefficients of s and after some mathematical manipulations, Eq. (12) can be rewritten in
the form:

ðM �m2Þs4 þ ðMbþDb� 2mdbÞs3 þ ðMdþDb2 þ Kd� d2b� 2mkd� aÞs2

þ ðDbdþ Kbd� 2dkbd� gÞsþ ðKd2 � kd2Þ ¼ 0. (13)

In order to satisfy Eq. (13) each coefficient of s has to be equal to zero, resulting in the five following
algebraic equations:

M �m2 ¼ 0, (14)

M þD� 2md ¼ 0 ðba0Þ, (15)

MdþDb2 þ Kd� d2b2 � 2mkd ¼ a, (16)
2Barrett and Gotts [21] also deals with Laplace-domain in order to simulate the dynamic behavior of viscoelastic systems.
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Dþ K � 2dk ¼ g=ðbdÞ; ðbda0Þ, (17)

K � k2
¼ 0. (18)

There are infinite solutions for this system of algebraic equations. The chosen solution considers the
restriction g ¼ ab, leading to

D ¼ 0, (19)

M ¼ 0, (20)

K ¼ a=d, (21)

d ¼ 0, (22)

m ¼ 0, (23)

k ¼
ffiffiffiffiffiffiffiffi
a=d

p
. (24)

Obviously, the adopted restriction is only valid if the experimental curves of the considered viscoelastic
material allow this kind of simplification. Replacing the chosen solution in Eq. (5) and omitting the time
variable t leads to the following:

0 0

0 1

� �
€q

€z

� �
þ b

0 0

0 1

� �
_q

_z

� �
þ d

a=d
ffiffiffiffiffiffiffiffiffiffiffi
ða=dÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
ða=dÞ

p
1

" #
q

z

� �
¼

H

0

� �
. (25)

Eq. (25) may be rewritten in a simpler form, by changing the variables y ¼ z
ffiffiffiffiffiffiffiffi
d=a

p
producing the following

equation where y is known as the dissipation variable:

a=d
0 0

0 1

� � €q

€y

( )
þ

ab
d

0 0

0 1

� � _q

_y

( )
þ a

1 1

1 1

� �
q

y

( )
¼

H

0

� �
. (26)

By using H value from Eq. (26), the particular inverse Laplace transformation of a single degree-of-
freedom system constituted by viscoelastic material, Eq. (5), may be expressed in the following form:

M 0

0 a=dK

" #
€qðtÞ

€yðtÞ

( )
þ

0 0

0 ab=dK

" #
_qðtÞ

_yðtÞ

( )
þ
ðeþ aÞK aK

aK aK

� �
qðtÞ

yðtÞ

( )
¼

f ðtÞ

0

� �
. (27)

Despite the lack of physical meaning of the dissipation variable yðtÞ, it is possible to describe its mechanical
interpretation as shown in Fig. 1. This figure presents the well-known Maxwell model with a linear spring
connected in parallel forming a linear standard model, inducing that this GHM-based model is, in fact, a
different way to interpret it.

By using an analog process and some additional considerations described in Ref. [18], it is possible to
achieve the system of differential equations for a multi-degree-of-freedom finite element model as

Mv
€qðtÞ

€yðtÞ

( )
þ Cv

_qðtÞ

_yðtÞ

( )
þ Kv

qðtÞ

yðtÞ

( )
¼

fðtÞ

0

� �
, (28)

where

Mv ¼
Me 0

0 a=dI

" #
, (29)

Cv
¼

0 0

0 ab=dI

" #
; and (30)
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Fig. 1. Mechanical interpretation of the adopted Golla–Hughes method model.
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Kv ¼
ðeþ aÞKe aR

aRT aI

� �
(31)

are, respectively, the mass, damping and stiffness matrices of the viscoelastic finite element (v denotes
viscoelastic matrices); where Me is the finite element mass matrix considering an elastic system; Ke is the finite
element stiffness matrix considering an elastic system and excluding the Young’s modulus (e denotes elastic
matrices); qðtÞ, _qðtÞ and €qðtÞ are, respectively, the displacement, velocity and acceleration vectors of the real
degrees-of-freedom; yðtÞ, _yðtÞ and €yðtÞ are, respectively, the displacement, velocity and acceleration vectors of
the dissipation degrees-of-freedom; 0 and I represents, respectively, the null and the identity matrix or vector;
fðtÞ is the force vector; R ¼ RdK

1=2
d ; Rd is the matrix whose columns are the eigenvectors of Ke associated to

the non-rigid body modes; and Kd is the diagonal matrix with the related eigenvalues of Rd .
The dimension of the viscoelastic matrices depends on the dimension of the related elastic finite element and

the amount of dissipation variables. Each physical degree-of-freedom implies one dissipation variable,
although it is necessary to exclude those associated to rigid modes of Ke. For example, for a four nodes plane
quadrilateral linear finite element with two degrees-of-freedom (vertical and horizontal displacements) per
node, there are eight real degrees-of-freedom and five dissipation variables: 8 real degrees-of-freedom–3 rigid
modes (two translations and one rotation) ¼ 5. In this case the dimension of the viscoelastic matrices is
8þ 5 ¼ 13.

Finally, GHM parameters obtained from experimental data (e, a, b and d) and Eqs. (29)–(31) allow the
determination of the viscoelastic finite element matrices for any kind of finite element model.

3. Determination of GHM parameters from experimental data

Eq. (1) may also be expressed in the frequency-domain, considering the dissipation function of Eq. (3):

E�ðoÞ ¼ eþ
að�o2 þ iboÞ
�o2 þ iboþ d

, (32)

where E�ðoÞ is the complex modulus expressed in the frequency-domain; i ¼
ffiffiffiffiffiffiffi
�1
p

; and o is the frequency
variable.
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Commonly this complex modulus is divided into two parts: E 0 is the real part, known as storage modulus;
and Z is the ratio between the imaginary and real parts, E00=E0 are known as loss factor.

Eqs. (33) and (34) express, respectively, E0 and Z:

E0 ¼ eþ
ao2ðo2 � dþ b2Þ

ðd� o2Þ
2
þ b2o2

, (33)

Z ¼
abod

ðd� o2Þ
2
þ b2o2

1

E0
. (34)

The parameters e, a, b, d in Eqs. (33) and (34) are in general obtained from curve fitting experimental results
given in terms of E0ðoÞ and Z0ðoÞ. In this work, experimental tests based on ‘‘ASTM Standard Test Method for
Measuring Vibration-Damping Properties of Materials’’ [22] were developed in order to determine these
parameters.

The experimental program concerned 6 beams of different lengths divided in two groups: a set of three
simple beams, presented in Fig. 2 and a set of three sandwich beams, presented in Fig. 3. The simple set is
composed by three elastic clumped–free aluminum beams having one single layer, and the sandwich set has
three viscoelastic sandwich clumped–free beams, having two layers of aluminum and the viscoelastic material
in the core composed by a Scott double-face adhesive 3M Scotchr double adherent faces. For each set, it was
tested three specimens lengths ðLÞ: 0.50, 0.80 and 1.00m. A photo of a typical tested sample and the beam test
scheme are presented in Figs. 4 and 5, respectively, showing the excited and the observed points valid for
both sets.

The dynamic responses of the beams were obtained by means of accelerometer’s measurements during
a free vibration tests performed by employing instantaneous hammer impact as excitation. Figs. 6(a)–(c)
present typical time responses in terms of vertical accelerations for 0.50, 0.80 and 1.00m long beams,
respectively.
Fig. 2. Picture of the simple set.
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Fig. 3. Picture of the sandwich set.

Fig. 4. Picture of a typical specimen test setup.
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The main features of the used equipment and the data acquisition are: accelerometer model AS-GA Kyowa
[23], rated capacity �2 g (safe overloading 300%); acquisition system: Lynx ADS2000 [24]; frequency of
acquisition 1000Hz; low-pass filtering via hardware in 200Hz; and time of acquisition: 1 s.

ASTM [22] recommends the use of non-contacting-type transducers for the dynamic test measurements. As
this kind of equipment is not available in the test laboratory, the accerelometers weight influence in the
dynamic behavior of the tested beams demands additional analysis.

The experimental results in terms of the tree first natural frequencies, loss factor and respective standard
deviations for the simple and the sandwich sets are presented in Tables 1 and 2, respectively. The modal
identification was carried out using random decrement method [25] and Ibrahim time-domain method [26].
Each sample was subjected to 4 tests and modal identifications were carried out about 200 times, taking
different parts of the responses. Table 1 also presents theoretical natural frequencies for the simple set
obtained with
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f n ¼ rn

ffiffiffiffiffiffiffiffiffi
EI

m̄L4

r
, (35)

where f n, (n ¼ 1 . . . 3), are the natural undamped frequencies of the system (in Hz); E ¼ 68:7GPa is the
adopted aluminum Young’s modulus; I ¼ 5:40� 10�11 m4 is the cross-section moment of inertia; m̄ ¼

0:1937 kg=m is the mass per unit of length; and r ¼ f0:560; 3:507; 9:820g.
By observing percentage differences between the theoretical and experimental results shown in Table 1, it is

noticed that the influence of accelerometer weight is more significant for the dynamic behavior of 0.50m long
beam. These results reduce test reliabilities, but they are not significant enough in order to invalidate them.

Except for the third natural frequency of the 0.50m long simple sample, all the identified natural frequencies
have standard deviation lower than 4%. The major part of natural frequencies had standard deviation inferior
to 1%. In terms of damping identification, the standard deviations were more significant, in accordance with
damping results presented in Ref. [27], and the mean values are not very different from those obtained by
Faisca [28].

By applying Eqs. (36)–(39) (retyped from Ref. [22]) with the results of mean natural frequencies and mean
loss factor obtained from the two tested sets, presented in Tables 1 and 2, it is possible to calculate E0 and Z for
the viscoelastic material in the discrete values of natural frequencies of the sandwich set.

E2n ¼ 2ð1þ nÞ
ðA� BÞ � 2ðA� BÞ2 � 2ðAZnÞ

2

ð1� 2Aþ 2BÞ2 þ 4ðAZnÞ
2

E1H1H2an

L2
, (36)

Z2n ¼
AZn

ðA� BÞ � 2ðA� BÞ2 � 2ðAZnÞ
2
, (37)

A ¼
on

o1n

� �2

ð2þ rrh2Þ
B

2

� �
, (38)

B ¼
1

6ð1þ h2Þ
2
, (39)
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Fig. 6. Typical time series for simple (thin lines) and sandwich (thick lines) specimens: (a) L ¼ 0:5m; (b) L ¼ 0:8m and (c) L ¼ 1:0m.
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Table 1

Summary of experimental results for the simple set and the respective theoretical natural frequencies

L ¼ 1:00m L ¼ 0:80m L ¼ 0:50m

f
exp
1

2:67� 0:10 3:99� 0:05 9:98� 0:01

f the
1

2.45 3.83 9.80

ðf teo
1 � f

exp
1 Þ=f

exp
1

�8.24% �4.51% �1.80%

Z1 0:0960� 0:0512 0:0244� 0:0298 0:0104� 0:0020

f
exp
2

15:44� 0:03 22:77� 0:04 54:28� 0:09

f the
2

15.35 23.98 61.39

ðf teo
2 � f

exp
2 Þ=f

exp
2

�0.58% 5.31% 13.10%

Z2 0:0256� 0:0028 0:0250� 0:0180 0:0380� 0:0066

f
exp
3

42:93� 0:08 63:62� 0:09 157:72� 11:85

f the
3

42.96 67.15 171.90

ðf teo
3 � f

exp
3 Þ=f

exp
3

0.07% 5.55% 8.99%

Z3 0:0210� 0:0206 0:0258� 0:0180 0:0730� 0:0356

ð
exp
Þ denotes mean experimental values; ðtheÞ denotes theoretical values; and ðnÞ denotes the nth natural frequency or loss factor

ðn ¼ 1 . . . 3Þ. Frequencies are presented in Hz.

Table 2

Summary of experimental results for the sandwich set

L ¼ 1:00m L ¼ 0:80m L ¼ 0:50m

f 1 5:05� 0:02 7:55� 0:03 16:95� 0:04
Z1 0:1434� 0:0084 0:1770� 0:0062 0:1748� 0:0060

f 2 24:54� 0:69 37:13� 0:08 79:33� 0:16
Z2 0:1508� 0:0374 0:1768� 0:0058 0:0765� 0:0102

f 3 60:13� 0:31 93:18� 2:41 184:44� 3:00
Z3 0:1754� 0:0098 0:0788� 0:0668 0:1350� 0:0142

ðnÞ denotes the nth natural frequency or loss factor ðn ¼ 1 . . . 3Þ. Frequencies are presented in Hz.
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where h2 is the ratio between the viscoelastic core thickness and the elastic layer thickness (h2 ¼ H2=H1); on

and Zn are the nth natural frequency and loss factor of the sandwich beam set; o1n is the the nth natural
frequency of the simple set; rr is the ratio between viscoelastic and elastic material densities; L is the beam
length; E2n and n ¼ 0:25 are, respectively, the Young’s modulus and the Poisson ratio of the viscoelastic
material; and a ¼ f3:516; 22:035; 61:697g.

Discrete points in Figs. 7 and 8 are, respectively, the storage modulus E 0 and the loss factor Z of the tested
viscoelastic material and the plotted solid lines are Eqs. (33) and (34) obtained by curve-fitting viscoelastic
parameters a, b, d and �. The curve fit procedure was carried out using least-squares method and the discrete
experimental points of E0 and Z, resulting in: a ¼ 5:26MPa, b ¼ 55:59� 106 s�1, d ¼ 6:98� 109 s�2 and
� ¼ 0:58MPa. The quality of the curve fitting is limited by the amount of parameters adopted in the GHM
model. The fitted curves may be improved by means of a Biot’s representation (see Eq. (2)) based on more
than two terms, which leads to a GHM model with more than four parameters and results in a completely
different finite element model, rather more complex than the one dealt herein.

4. The sandwich viscoelastic model

The proposed sandwich viscoelastic model is presented in Fig. 9. It is composed by a combination of seven
finite elements: two elastic frame elements (with two nodes each one); one quadrilateral linear viscoelastic
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plate element (with four nodes); and four rigid connection elements (with two nodes each one). The model has
24 physical degrees-of-freedom (q1 to q24, numbered from 1 to 24), and 5 dissipation variables (y1 to y5,
numbered from 25 to 29), resulting in a super element model matrix dimension of 29. The dissipation variable
directions plotted in Fig. 9 have no physical interpretation.

The kinematics assumptions of the proposed finite element model assure deflection deformations in the
viscoelastic core as shown in Fig. 10, introducing shearing effects. It is possible to observe that the proposed
sandwich finite element model allows discontinuity in the displacement field between the frames and the
quadrilateral viscoelastic linear element. In this case, errors inherent to the proposed finite element model must
be investigated through the mesh convergence analysis.

Another limitation of the model concerns the core thickness. Thick cores introduce high-order vibration
modes, leading each elastic layer of the sandwich beam to vibrate isolated.

In order to compute the contribution of each kind of finite element in the composition of the sandwich finite
element model matrices, the problem is decomposed in three parts: contribution of the two elastic beam
elements; contribution of the rectangular viscoelastic element; and contribution of the four connection
elements.
4.1. Contribution of the two elastic frame elements

For the sake of simplicity, the following is adopted: Being a n-dimensional square matrix H; a k and
a p-dimensional vectors l and c, respectively, being 1pk; ppn, Hl;c is defined as a sub-matrix of H having l

lines and c columns.
Being M, K and C the super element model matrices, the individual matrix contributions of each beam for

the finite element model of Fig. 9 is well known and presented in Eqs. (40)–(42), representing the mass,
damping and stiffness matrix contributions, respectively

Ml;c ¼

140m 0 0 70m 0 0

0 156m 22mL 0 54m �13mL

0 22mL 4mL2 0 13mL �3mL2

70m 0 0 140m 0 0

0 54m 13mL 0 156m �22mL

0 �13mL �3mL2 0 �22mL 4mL2

2
666666664

3
777777775
, (40)

Cl;c ¼ cMl;c; and (41)
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Kl;c ¼

EA

L
0 0 �

EA

L
0 0

0
12EI

L3

6EI

L2
0 �

12EI

L3

6EI

L2

0
6EI

L2

4EI

L
0 �

6EI

L2

2EI

L

�
EA

L
0 0

EA

L
0 0

0 �
12EI

L3
�
6EI

L2
0

12EI

L3
�
6EI

L2

0
6EI

L2

2EI

L
0 �

6EI

L2

4EI

L

2
66666666666666666664

3
77777777777777777775

, (42)

where l ¼ c ¼ f1; 2; 3; 4; 5; 6g for the superior beam and l ¼ c ¼ f19; 20; 21; 22; 23; 24g for the inferior beam;
m ¼ reAL=420; L ¼ 2a, re and A are, respectively, the length, density and cross-section area of the beam
element; E is the Young’s modulus of the elastic material and I is the moment of inertia of the beam element
cross-section; and c 2 R, considering mass proportionality for damping. In spite of damping features present
in the elastic aluminum beam (see Table 1), since the damping characteristics of the viscoelastic material is
considerably superior to those related to the elastic material, it is adopted c ¼ 0 for the sandwich model.

4.2. Contribution of the quadrilateral viscoelastic element

The quadrilateral linear viscoelastic plate part of the sandwich element is obtained from a linear plate elastic
finite element presented in Fig. 11, whose displacement field is defined in

uðx; yÞ ¼
1

4ab
ð�q7 þ q10 þ q13 � q16Þxyþ ð�q7 þ q10 � q13 þ q16Þbx

þ ðq7 þ q10 � q13 � q16Þayþ
1

4
ðq16 þ q7 þ q10 þ q13Þ, (43)

vðx; yÞ ¼
1

4ab
ðq11 þ q14 � q17 � q8Þxyþ ðq17 þ q11 � q14 � q8Þbx

þ ðq11 þ q8 � q17 � q14Þayþ
1

4
ðq17 þ q8 þ q11 þ q14Þ, (44)

where uðx; yÞ and vðx; yÞ are the horizontal and vertical displacement fields, respectively, q10, q11, q7, q8, q13,
q14, q16 and q17 (numbered in Fig. 11) are the nodal displacements; 2a and 2b are, respectively, the height and
width of the element.
x,u

y,v

11
10

14 17
16

7
8

13

a a

b

b

Fig. 11. Quadrilateral linear plate elastic finite element.
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For the adopted interpolation functions, the quadrilateral linear plate viscoelastic element contribution for
the super element matrix model K is presented in the following equations:

Kl1;c1 ¼ tðeþ aÞ

ke
1 ke

2 ke
3 ke

4 �
ke
1

2
�ke

2 ke
5 �ke

4

ke
2 ke

6 �ke
4 ke

7 �ke
2 �

ke
6

2
ke
4 ke

8

ke
3 �ke

4 ke
1 �ke
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4 �
ke
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ke
4 ke

7 �ke
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2
66666666666666666666666666664

3
77777777777777777777777777775

, (45)

where l1 ¼ c1 ¼ f10; 11; 7; 8; 13; 14; 16; 17g; ke
1 ¼ r2d1 þ d3=3r; ke

2 ¼ d2 þ d3=4; ke
3 ¼ �2r2d1 � d3=6r; ke

4 ¼

d2 � d3=4; ke
5 ¼ r2d1 � 2d3=6r ke

6 ¼ r2d3 þ d1=3r; ke
7 ¼ �2r2d3 � d1=6r; ke

8 ¼ r2d3 � 2d1=6r; d1 ¼ 1=1� n2;
d2 ¼ 1� n=2ð1� n2Þ; d3 ¼ n=1� n2; n is the Poisson ratio of the viscoelastic material; r ¼ b=a; 2a, 2b and t are,
respectively, the length, height and thickness of the quadrilateral element;

Kl2;c2 ¼ diagfa; a; a; a; ag, (46)

where l2 ¼ c2 ¼ f25; 26; 27; 28; 29g; and

Kl3;c3 ¼

þ7:3098e� 1 �3:7222eþ 1 þ0:0000eþ 0 �2:1556eþ 1 þ2:8246eþ 0

�6:0783eþ 1 þ1:7867eþ 0 �3:5108eþ 1 þ0:0000eþ 0 þ3:3968e� 2

�7:3098e� 1 �3:7222eþ 1 þ0:0000eþ 0 þ2:1556eþ 1 �2:8246eþ 0

�6:0783eþ 1 �1:7867eþ 0 þ3:5108eþ 1 þ0:0000eþ 0 þ3:3968e� 2

þ7:3098e� 1 þ3:7222eþ 1 þ0:0000eþ 0 þ2:1556eþ 1 þ2:8246eþ 0

þ6:0783eþ 1 þ1:7867eþ 0 þ3:5108eþ 1 þ0:0000eþ 0 �3:3968e� 2

�7:3098e� 1 þ3:7222eþ 1 þ0:0000eþ 0 �2:1556eþ 1 �2:8246eþ 0

þ6:0783eþ 1 �1:7867eþ 0 �3:5108eþ 1 þ0:0000eþ 0 �3:3968e� 2

2
66666666666664

3
77777777777775
, (47)

where l3 ¼ f10; 11; 7; 8; 13; 14; 16; 17g and c3 ¼ f25; 26; 27; 28; 29g. The eigenvalue problem involved in the
solution of the viscoelastic stiffness matrix leads to a complex algebraic solution. For this reason, numerical
values resulting from r ¼ 4:8000e� 02, thickness ¼ 24mm and Poisson’s ratio ¼ 0:25 are presented in Eq.
(47).

The quadrilateral linear plate viscoelastic element contribution for the super element model matrices M and
C is presented in the following equations, respectively

Ml;c ¼ diag m;m;m; m;m; m;m; m;
a
d
;
a
d
;
a
d
;
a
d
;
a
d

n o
, (48)

Cl;c ¼ diag 0; 0; 0; 0; 0; 0; 0; 0;
ab
d
;
ab
d
;
ab
d
;
ab
d
;
ab
d

� �
, (49)

where l ¼ c ¼ f10; 11; 7; 8; 13; 14; 16; 17; 25; 26; 27; 28; 29g, m ¼ rvabt, being rv the viscoelastic material density.
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4.3. Contribution of the four connection elements

The principal features of the implemented connection elements are: they do not increase neither mass nor
damping of the super element model and they should assure that the deformed shape of each beam element
cross-section remains perpendicular to their respective longitudinal deformed lines. These features assure the
introduction of shear deformation in the viscoelastic core model as presented in Fig. 10 and imply null mass
and damping matrices whose contributions for the super element stiffness model matrix may be expressed by

Kl;c ¼

E1A

e
0 0 �

E1A

e
0 0

0
12E1I

e3
6E1I

e2
0 �

12E1I

e3
6E1I

e2

0
6E1I

e2
4E1I

e
0 �

6E1I

e2
2E1I

e

�
E1A

e
0 0

E1A

e
0 0

0 �
12E1I

e3
�
6E1I

e2
0

12E1I

e3
�
6E1I

e2

0
6E1I

e2
2E1I

e
0 �

6E1I

e2
4E1I

e

2
66666666666666666664

3
77777777777777777775

, (50)

where l ¼ c ¼ f8; 7; 9; 2; 1; 3g for the connection element #1; l ¼ c ¼ f11; 10; 12; 5; 4; 6g for the connection
element #2; l ¼ c ¼ f20; 19; 21; 14; 13; 15g for the connection element #3; l ¼ c ¼ f23; 22; 24; 17; 16; 18g for the
connection element #4; E1 ¼ 100E; and 2e is the height of the elastic beams.

The sandwich finite element model matrices presented herein consider identical external layers (beam
elements). In the cases where the external layers are not identical, matricesM, C and Kmust be adapted due to
differences between the cross-section and the material properties of each beam element.
5. Validation of the proposed finite element model

The first validation test is to verify if the proposed super finite element model is able to simulate the dynamic
behavior of a purely elastic beam. To this end the first three natural frequencies of the aluminum made
clumped–free elastic beam model presented in Fig. 12 are evaluated through the solution of the classic
eigenvalue problem:

ðKs � o2
nM

sÞfn ¼ 0, (51)

where Ks and Ms are, respectively, stiffness and mass matrices of the system obtained using the proposed finite
element model; s denotes system matrices; on (n ¼ 1 . . . 3) are the circular natural undamped frequencies with
the respective mode shapes fn.

As the core material is modelled as purely elastic, dissipation variables must be eliminated; Young’s
modulus is considered constant (E0 ¼ �); and loss factor was set to zero (a ¼ 0). Other physical properties of
the modelled aluminum are: Young’s modulus: 68.70GPa; density: 2690 kg=m3; and Poisson ratio: 0.33.

Table 3 compares theoretical natural frequencies obtained using Eq. (6) to the ones obtained using the
proposed finite element model, showing good agreement. In this analysis 500 super elements were used.

The second validation test is carried out through comparisons between frequency-domain responses
obtained using the proposed finite element model and a classic formulation for computational modelling of
frequency-dependent properties of viscoelastic materials. The adopted model is obtained by replacing the
elastic core of the beam used in the first validation test by the experimentally tested viscoelastic material
(a ¼ 5:26MPa, b ¼ 55:59� 106 s�1, d ¼ 6:98� 109 s�2 and � ¼ 0:58MPaÞ. Other physical properties of the
modelled viscoelastic material are: density: 795 kg=m3; and Poisson’s ratio: 0.25.

The analysis referred as classic frequency-domain analysis of the modelled clumped–free sandwich beam
was carried out using the following equation by updating Young’s modulus (E�) for each frequency (o) and
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Table 3

Comparison between theoretical and finite element model natural frequencies of the first validation test

Natural frequencies (Hz) Theoretical Finite element model Percentage difference

f 1 6.53 6.64 1.68

f 2 40.93 41.63 1.71

f 3 114.61 116.51 1.66
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Fig. 13. Comparison between classic and Golla–Hughes method frequency-domain response.
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eliminating dissipation variables

qðoÞ ¼ ½KsðoÞ � o2Ms��1fðoÞ, (52)

where KsðoÞ is the stiffness matrix of the system, now depending on E�ðoÞ value.
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The GHM frequency-domain response may be obtained from the following equation. It is important to
notice that the proposed model does not require Young’s modulus update although dissipation variables are
introduced

_qðoÞ

_yðoÞ

( )
¼ ½Ks þ ioCs

� o2Ms��1
fðoÞ

0

� �
. (53)

Fig. 13 compares GHM frequency-domain response with classic analysis counterpart for an excitation
vector having one single component applied in the degree-of-freedom presented in Fig. 12. It is clearly noticed
that classic and GHM analysis lead to the same result. The same practical values results for the second
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Fig. 14. Convergence analysis of the 1.0m long beam finite element model: dotted line, thick solid line and fine solid line present results for

48, 24 and 12 super element model, respectively.
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validation test may be achieved by using a finite element model with 24 super elements. Another important
point to observe is that time-domain analysis through GHM formulation is very simple since the stiffness
matrix is constant.
6. Example of numerical application

The time-domain dynamic behavior of the three sandwich beams experimentally tested in Section 3 were
computationally modelled with the sandwich element proposed in this work.

The three finite element models were adopted after a convergence analysis. Results for a free vibration test
with impact load applied in models with 12, 24 and 48 sandwich super elements were analyzed and it was
verified, by regarding Fig. 14, that results for 24 and 48 are practically coincident. Due to this fact, the adopted
models have 24 super elements, as shown in Fig. 15.

The super element finite element matrices may be calculated using equations of Section 4. For the 24 super
elements used in the discretization, it implies 332 physical degree-of-freedom and 120 dissipation variables.
Physical and geometric properties adopted for the models are the same used in validation tests.

As the hammer excitation impact was not measured, the three adopted sandwich beam models were
submitted to the excitation bilinear function model presented in Fig. 16. The maximal amplitude of this
excitation function (20N) was evaluated by multiplying the hammer mass (0.20 g) by the mean acceleration
level of the beams (approximately 100m=s2) at impact instant extracted from Fig. 6, since hammer and beam
mass are similar. The time of load application (0.03 s) was evaluated as approximately 15% of the first natural
period of the simple set. The adopted impact duration time is close to the one measured in Ref. [29].

The set of 452 differential equations was integrated using Newmark method with 8333 time steps of
0.00012 s, consuming 95% of the total CPU processing time which reached 7.05 s in a Matlabr

implementation on a Pentiumr IV 2.8GHz. The time-domain responses were filtered with a low-pass filter
in 200Hz, as it was made in the experimental tests.

Figs. 17(a)–(c) show comparisons between experimental and numerical time responses for the three tested
cases, indicating a reasonable correlation, specially for the 1.0 and 0.8 length beams. The differences between
numerical and experimental results are probably due to uncertainties in the experimental program and in the
adopted impact model. In a qualitative point of view, these results are almost equivalent, considering that the
acceleration level in the time interval 0–0.1 s is practically the same and also that the acceleration level past
0.3 s is practically negligible for both analysis. These results demonstrate the good performance of the
proposed finite element model in a time-domain simulation of a sandwich viscoelastic beam dynamic behavior.

Table 4 presents experimental and numerical results obtained for the first three natural frequencies of the
three sandwich beams, showing that the differences between these results are inferior to 14.50%. Such
Table 4

Comparisons between experimental and numerical results for the sandwich set

L ¼ 1:00m L ¼ 0:80m L ¼ 0:50m

f
exp
1

5.05 7.55 16.95

f num
1 4.32 6.61 14.86

ðf num
1 � f

exp
1 Þ=f

exp
1

�14.46% �12.45% �12.33%

f
exp
2

24.54 37.13 79.33

f num
2 22.88 32.05 88.75

ðf num
2 � f

exp
2 Þ=f

exp
2

�6.76% �13.68% 11.87%

f
exp
3

60.13 93.18 184.44

f num
3 53.66 83.16 166.83

ðf num
3 � f

exp
3 Þ=f

exp
3

�10.76% �10.75% �9.55%

ð
exp
Þ denotes mean experimental values; ðnumÞ denotes numerical values; and ðnÞ denotes the nth natural frequency. Frequencies are

presented in Hz.
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differences may be explained by the quality of the curve fitting obtained from the four parameters GHM
model presented herein (see Figs. 7 and 8).
7. Conclusions

A GHM-based sandwich finite element model was presented in this work. All the element matrices were
developed and presented as well as all experimental procedures necessary to evaluate GHM parameters. A
validation test was carried out by comparing frequency-domain response of the proposed finite element model
to the ones obtained by theoretical and classic formulations. A numerical model using the proposed finite
element model was dynamically tested and the obtained results were compared with experimental results
counterpart, showing good agreement.
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